Tagged with: Centering
Aligning reflecting optics with Bessel beams (ABSTRACT)
ABSTRACT: Bessel beams have found use in the alignment of transmissive optics for some time. They are also used for the alignment of reflecting optics when used in the imaging mode, that is, when the wavefront is near spherical. However, there are cases where it would be useful to use the Bessel beam for alignment of far-off axis aspheres to order to get the asphere aligned close enough to its final position that light will go through the system in the imaging mode. In another mode, the Bessel beam is used to determine the normal to a free form surface.
Centering Steep Aspheric Surfaces (ABSTRACT)
Conjugate Selection for Precision Lens Centering (ABSTRACT)
Practical Alignment Using an Autostigmatic Microscope (ABSTRACT)
ABSTRACT: This paper defines optical alignment as placing optical conjugates and centers of curvature at the precise locations specified in the optical design. Auto-stigmatic microscopes (ASM) are the tools used to measure the offset between the optical conjugates and physical datums such as centers of balls and axes of cylinders in alignment fixtures and making precise alignment practical.
Precision cementing of doublets without using a rotary table (ABSTRACT)
ABSTRACT: Methods of centering without using a precision rotary table to establish a reference axis in space are several times faster than with a rotary table. However, finding an optimum method of establishing an alternative reference axis is challenging. We look at the small class of centering situations involving the precision cementing of doublets to illustrate the advantages of using a Bessel beam as the reference axis. Two approaches to centering illustrate the method; one involving first aligning the meniscus element and then adding the positive element, and the other, cementing the two elements and aligning the pair.