EU e-Privacy Directive

This website uses cookies to manage authentication, navigation, and other functions. By using our website, you agree that we can place these types of cookies on your device.

View e-Privacy Directive Documents

You have declined cookies. This decision can be reversed.

Why is optical alignment so important to optical system performance?

The main reason is that the other two major factors in performance, optical design and optical fabrication, have already been improved to the very limits of what can be accomplished. After spending good money on a near perfect design and fabrication of optical components does it make any sense not to assemble them in perfect alignment?
By perfect alignment we mean placing the elements where the design says they should in the theoretical optical and mechanical design, not just within some tolerance band, but precisely where the design says they should be. Only this way can you get performance at the same level as the perfection of the design and fabrication of the components.
In the last several decades with the help of incredible computing power optical design has reached the limits of perfection. Optical systems are being designed with vastly better performance than ever before by making use of aspheres and coatings that could only be used because of the computing power available these days. Unfortunately these advanced designs could not be made because optical fabrication methods had not kept up with the power of optical design.
Now with computer controlled polishing techniques like MRF, diamond turning and molding of both glass and plastic elements the aspheres that help with performance because of their design are now practical to make to high quality. Similarly coatings to enhance performance have been improved to the point that making them any better is no longer cost effective.
Now comes the hard part; how do you position these near perfect components, mechanical and optical, relative to each other so they perform as well as the theoretically perfect design? One way, the way usually followed is to tighten the tolerances on both the optical and mechanical parts until they have to go together perfectly but this is impossible to do because some slop has to be left or it is impossible to get the glass into the metal mount.
Another way is to leave loose tolerances for edging and bores of lens barrels so the element can be positioned where the design specifies it should be. This is where a tool like the PSM comes in. The PSM can be positioned so its focus is where the center of curvature of a surface should be according to the design and then the surface adjusted until it is centered to the PSM reference cross hairs.
Clearly this is not the way to assemble optics on a mass production basis. But when performance is at a premium such as in lenses for reconnaissance and cinematography, for example, it is far more efficient and cost effective to allow looser tolerances on glass and metal, and then individually align each element as it should be.
I remember many years ago seeing sophisticated lens systems assembled from well-made glass and metal components which were then tested for optical performance. They often failed the optical test and were sent back to the assembly department where they were taken completely apart and re-assembled with the hope that this time they might pass the performance test. In hindsight this was a ridiculous procedure. With the aid a a PSM and a little Fixturing the lens systems could have been assembled so they passed the optical test the first time, every time. This is the smart way to do alignment.

Case Studies & Testimonials

  • How small can the PSM be used for centering on a cylindrical axis?

    The PSM is an ideal tool for finding the center of curvature of a ball or the axis of a cylinder. The question is for how small a ball or cylinder can the PSM do this?

    The smallest article that was readily available was a piece of monofilament 8 pound test fishing line that was 290 μm in diameter. There was no problem finding the axis of the fishline, and separating the Cat’s eye reflection from the surface from the confocal reflection of the axis. The experiment was done with a 5x objective, and the result would have been even more definitive using a 10x objective.

  • Why is proper alignment so important?

    Here is a case of a very happy customer due to better optics.

    A few days ago an astronomer friend of mine commented that he had gotten the optics of his telescope improved and the improvement reduced the time it took to get data by a factor of 3. For an astronomer this is a dramatic improvement since observing time on large telescopes can cost thousands of dollars an hour.

    My friend did not say how the optics had been improved, but the important point is that better optics, whether due to figure errors, mounting or alignment mean more productive optics. I generally think of better optics as a better product leaving the manufacturing facility without thinking about how much the better optics mean to the productivity of the customer.