enafsqarhyazeubebgcazh-CNhrcsdanltlfifrdeeliwhihuisidgaitjakolvltmkmsmtnofaplptrorusrskslesswsvthtrukurvi
enafsqarhyazeubebgcazh-CNhrcsdanltlfifrdeeliwhihuisidgaitjakolvltmkmsmtnofaplptrorusrskslesswsvthtrukurvi

Message

EU e-Privacy Directive

This website uses cookies to manage authentication, navigation, and other functions. By using our website, you agree that we can place these types of cookies on your device.

View e-Privacy Directive Documents

View GDPR Documents

You have declined cookies. This decision can be reversed.

Tagged with: Autostigmatic microscope

Aligning a Parabola to an Autocollimating Flat Mirror (ABSTRACT)

ABSTRACT: An autostigmatic microscope is a perfect way of aligning an autocollimating flat mirror to a parabola. This notes descibes the simple two step process of positioning the PSM objective focus coincident with the focus of the parabola.

Aligning Optical Elements to a Common Axis (ABSTRACT)

ABSTRACT: It is sometimes necessary to align a series of optical elements, lenses and mirrors, to a single, straight optical axis. This note describes a method using an autostigmatic microscope (ASM) where the ASM is moved along a straight line relative to the axis of the bench in which the elelemts are mounted so the centers of curvature of the elements can be adjusted to lie on the line or axis of the system.

Alignment of 4-Mirror Wide Field Corrector for the Hobby-Eberly Telescope (ABSTRACT)

ABSTRACT: Paper by Oh describing the use of an autostigmatic microscope (PSM) to precisely position computer generated hologram (CGH) alignment targets on optical surfaces.

Alignment of Optical Systems (ABSTRACT)

ABSTRACT: Describes the advantages of aligning optical systems using a Point Source Microscope (PSM) where the optical axis of the system is folded in 2 or 3 dimensions  and shows how pseudo aberrations can be generated that show quantitatively the degree of precision of the alignment from the Star image seen in the PSM.

Centering Steep Aspheric Surfaces (ABSTRACT)

ABSTRACT: We describe a method of finding the optical axis of an aspheric surface by looking at an annulus of the surface as the surface is rotated in azimuth. The method uses either an autostigmatic microscope or an interferometer to view the annulus. Distinctive features of the reflected spot movement, or the changes in Zernike coefficients found with interferometry while the surface is rotated in azimuth permits the separation of decenter from tilt. The method appears to be suitable for use with any aspheric surface.

Computer Generated Holograms as Fixtures for Testing Optical Elements (ABSTRACT)

ABSTRACT: Custom patterns on computer generated holograms (CGH) are designed as centers of balls when interrogated with an autostigmatic microscope. Physical balls matched to these centers to micrometer tolerances serve as datums for optical elements.

Conjugate Selection for Precision Lens Centering (ABSTRACT)

ABSTRACT: The concept of centering a precision, symmetric lens system using a high-quality rotary table and an auto-focusing test instrument are well known. Less well known are methods of finding convenient, or easily accessible, lens conjugates on which to focus while performing the centering operation. We introduce methods of finding suitable conjugates and centering configurations that lend themselves to practical centering solutions.

Dual Light Source Microscope For Inspection of Micro-Optics (ABSTRACT)

ABSTRACT: Desription of using both the single mode fiber (SMF) point source and the full field LED source of the Point Source Microscope (PSM) for the inspection of the surfaces of micro-optics including surface defects and tool marks.

Lens Centering Using the Point Source Microscope (ABSTRACT)

ABSTRACT: Precision lens centering is necessary to obtain the maximum performance from a centered lens system. A technique to achieve precision centering is presented that incorporates the simultaneous viewing through the upper lens surface of the centers of curvature of each element as it is assembled in a lens barrel. This permits the alignment of the optical axis of each element on the axis of a precision rotary table which is taken as the axis of the assembly.

Measurement of Radius of Curvature (ABSTRACT)

ABSTRACT: The most common use of the Point Source Microscope (PSM), or any autostigmatic microscope, is the precision measurement of the radius of curvature of spherical surfaces. This note describes the procedure for doing so and defines confocal and Cat's eye focus.

Measuring the Four Paraxial Lens Parameters using an Autostigmatic Microscope (ABSTRACT)

ABSTRACT: Describes using an autostigmatic microscope (PSM) to find the two radii, thickness and index of a singlet lens by making 4 distance measurements similar to those used to measure the radius of curvature of a concave mirror, and then using the 4 distances to iteratively calculate the 4 paraxial lens parameters using an Excel spreadsheet and its Solver application.

Measuring Wedge in a Window (ABSTRACT)

ABSTRACT: One of the easier measurements to make with the Point Source Microscope (PSM) is determining the wedge in a nominally plane, parallel window by removing the PSM microscope objective and using the PSM as an autocollimator to view the wedge between the surfaces.

Non-Contact Probe for On-Machine Metrology (ABSTRACT)

ABSTRACT: On-machine metrology is particularly important for diamond turning and grinding as it is difficult to remount and align a part if it does not meet off-line inspection criteria. There is also the issue of tool wear; a process that started well may fail part way through the cut, and if tool replacement is needed, it is vital to know that before removing the part. A means of rapid, noncontact, in situ profiling and roughness measurement could improve the productivity of diamond tool machining.

Optical Alignment Using the Point Source Microscope (ABSTRACT)

ABSTRACT: A companion paper to "Alignment of an off-axis telescope and prism train" showing more detail of the mechanics involved in the telescope alignment and the multi-sensor instrument package.

Case Studies & Testimonials

  • How small can the PSM be used for centering on a cylindrical axis?

    The PSM is an ideal tool for finding the center of curvature of a ball or the axis of a cylinder. The question is for how small a ball or cylinder can the PSM do this?

    The smallest article that was readily available was a piece of monofilament 8 pound test fishing line that was 290 μm in diameter. There was no problem finding the axis of the fishline, and separating the Cat’s eye reflection from the surface from the confocal reflection of the axis. The experiment was done with a 5x objective, and the result would have been even more definitive using a 10x objective.

  • Why is proper alignment so important?

    Here is a case of a very happy customer due to better optics.

    A few days ago an astronomer friend of mine commented that he had gotten the optics of his telescope improved and the improvement reduced the time it took to get data by a factor of 3. For an astronomer this is a dramatic improvement since observing time on large telescopes can cost thousands of dollars an hour.

    My friend did not say how the optics had been improved, but the important point is that better optics, whether due to figure errors, mounting or alignment mean more productive optics. I generally think of better optics as a better product leaving the manufacturing facility without thinking about how much the better optics mean to the productivity of the customer.