enafsqarhyazeubebgcazh-CNhrcsdanltlfifrdeeliwhihuisidgaitjakolvltmkmsmtnofaplptrorusrskslesswsvthtrukurvi
enafsqarhyazeubebgcazh-CNhrcsdanltlfifrdeeliwhihuisidgaitjakolvltmkmsmtnofaplptrorusrskslesswsvthtrukurvi

Message

EU e-Privacy Directive

This website uses cookies to manage authentication, navigation, and other functions. By using our website, you agree that we can place these types of cookies on your device.

View e-Privacy Directive Documents

View GDPR Documents

You have declined cookies. This decision can be reversed.

Tagged with: Optical axis

Aligning a Parabola to an Autocollimating Flat Mirror (ABSTRACT)

ABSTRACT: An autostigmatic microscope is a perfect way of aligning an autocollimating flat mirror to a parabola. This notes descibes the simple two step process of positioning the PSM objective focus coincident with the focus of the parabola.

Aligning Optical Elements to a Common Axis (ABSTRACT)

ABSTRACT: It is sometimes necessary to align a series of optical elements, lenses and mirrors, to a single, straight optical axis. This note describes a method using an autostigmatic microscope (ASM) where the ASM is moved along a straight line relative to the axis of the bench in which the elelemts are mounted so the centers of curvature of the elements can be adjusted to lie on the line or axis of the system.

Centering Steep Aspheric Surfaces (ABSTRACT)

ABSTRACT: We describe a method of finding the optical axis of an aspheric surface by looking at an annulus of the surface as the surface is rotated in azimuth. The method uses either an autostigmatic microscope or an interferometer to view the annulus. Distinctive features of the reflected spot movement, or the changes in Zernike coefficients found with interferometry while the surface is rotated in azimuth permits the separation of decenter from tilt. The method appears to be suitable for use with any aspheric surface.

Case Studies & Testimonials

  • "As always we are very much loving the instrument, I personally love the camera upgrade from what I'm used to!"

    Weslin Pullen
    Hart Scientific Consulting International, LLC
    Tucson, Arizona

     

  • The PSM is an ideal tool for finding the center of curvature of a ball or the axis of a cylinder. The question is for how small a ball or cylinder can the PSM do this?

    The smallest article that was readily available was a piece of monofilament 8 pound test fishing line that was 290 μm in diameter. There was no problem finding the axis of the fishline, and separating the Cat’s eye reflection from the surface from the confocal reflection of the axis. The experiment was done with a 5x objective, and the result would have been even more definitive using a 10x objective.

  • Here is a case of a very happy customer due to better optics.

    A few days ago an astronomer friend of mine commented that he had gotten the optics of his telescope improved and the improvement reduced the time it took to get data by a factor of 3. For an astronomer this is a dramatic improvement since observing time on large telescopes can cost thousands of dollars an hour.

    My friend did not say how the optics had been improved, but the important point is that better optics, whether due to figure errors, mounting or alignment mean more productive optics. I generally think of better optics as a better product leaving the manufacturing facility without thinking about how much the better optics mean to the productivity of the customer.

Worldwide Representatives

FOR SALES IN CHINA PLEASE CONTACT:

FOR SALES IN CHINA PLEASE CONTACT:
OPTurn Company Ltd
R607, Yingzhi Building, 49-3 Suzhoujie Str.
Beijing, China
+86-10 62527842
This email address is being protected from spambots. You need JavaScript enabled to view it.

More Info

FOR SALES IN ALL OTHER ASIAN COUNTRIES PLEASE CONTACT:

FOR SALES IN ALL OTHER ASIAN COUNTRIES PLEASE CONTACT:

上原 賢司   Kenji Uehara
清原光学 営業部   Kiyohara Optics / Sales
+81.80.6600.6702
This email address is being protected from spambots. You need JavaScript enabled to view it.

Kiyohara Optics Inc.
3-28-10 Funado Itabashi-Ku Tokyo, Japan 174-0041

More Info